Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of laser irradiation energy density on the properties of pulsed laser deposited ITO thin films

Identifieur interne : 009F28 ( Main/Repository ); précédent : 009F27; suivant : 009F29

Effects of laser irradiation energy density on the properties of pulsed laser deposited ITO thin films

Auteurs : RBID : Pascal:05-0380779

Descripteurs français

English descriptors

Abstract

The properties of indium tin oxide (ITO) thin films, deposited at room temperature by simultaneous pulsed laser deposition (PLD), and laser irradiation of the substrate are reported. The films were fabricated from different Sn-doped In2O3 pellets at an oxygen pressure of 10 mTorr. During growth, a laser beam with an energy density of 0, 40 or 70 mJ/cm2 was directed at the middle part of the substrate, covering an area of ∼ 1 cm2. The non-irradiated (0 mJ/cm2) films were amorphous; films irradiated with 40 mJ/cm2 exhibited microcrystalline phases; and polycrystalline ITO films with a strong <111> > preferred orientation was obtained for a laser irradiation density of 70 mJ/cm2. The resistivity, carrier density, and Hall mobility of the ITO films were strongly dependent on the Sn doping concentration and the laser irradiation energy density. The smallest resistivity of ∼ 1 x 10-4 Ω cm was achieved for a 5 wt % Sn doped ITO films grown with a substrate irradiation energy density of 70 mJ/cm2. The carrier mobility diminished with increasing Sn doping concentration. Theoretical models show that the decrease in mobility with increasing Sn concentration is due to the scattering of electrons in the films by ionized centers.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:05-0380779

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effects of laser irradiation energy density on the properties of pulsed laser deposited ITO thin films</title>
<author>
<name sortKey="Adurodija, F O" uniqKey="Adurodija F">F. O. Adurodija</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Physics Department, Mount Allison University, 67 York Street</s1>
<s2>Sackville, N.B., E4L 1E6</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Sackville, N.B., E4L 1E6</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Br Ning, R" uniqKey="Br Ning R">R. Br Ning</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Physics Department, Mount Allison University, 67 York Street</s1>
<s2>Sackville, N.B., E4L 1E6</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Sackville, N.B., E4L 1E6</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Asia, I O" uniqKey="Asia I">I. O. Asia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Chemistry Department, Ambrose Alli University</s1>
<s2>Ekpoma</s2>
<s3>NGA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Nigeria</country>
<wicri:noRegion>Ekpoma</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Izumi, H" uniqKey="Izumi H">H. Izumi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Hyogo Prefectural Institute of Industrial Research, 3-1-12 Yukihira-cho</s1>
<s2>Suma-ku, Kobe 654-0037</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Suma-ku, Kobe 654-0037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ishihara, T" uniqKey="Ishihara T">T. Ishihara</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Hyogo Prefectural Institute of Industrial Research, 3-1-12 Yukihira-cho</s1>
<s2>Suma-ku, Kobe 654-0037</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Suma-ku, Kobe 654-0037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoshioka, H" uniqKey="Yoshioka H">H. Yoshioka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Hyogo Prefectural Institute of Industrial Research, 3-1-12 Yukihira-cho</s1>
<s2>Suma-ku, Kobe 654-0037</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Suma-ku, Kobe 654-0037</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">05-0380779</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0380779 INIST</idno>
<idno type="RBID">Pascal:05-0380779</idno>
<idno type="wicri:Area/Main/Corpus">009E09</idno>
<idno type="wicri:Area/Main/Repository">009F28</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0947-8396</idno>
<title level="j" type="abbreviated">Appl. phys., A Mater. sci. process. : (Print)</title>
<title level="j" type="main">Applied physics. A, Materials science & processing : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier density</term>
<term>Carrier mobility</term>
<term>Chemical composition</term>
<term>Doping</term>
<term>Electrical conductivity</term>
<term>Hall mobility</term>
<term>Indium oxides</term>
<term>Ionization</term>
<term>Laser radiation</term>
<term>Preferred orientation</term>
<term>Pulsed laser deposition</term>
<term>Radiation effects</term>
<term>Thin films</term>
<term>Tin oxides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet rayonnement</term>
<term>Rayonnement laser</term>
<term>Densité porteur charge</term>
<term>Dépôt laser pulsé</term>
<term>Dopage</term>
<term>Orientation préférentielle</term>
<term>Conductivité électrique</term>
<term>Mobilité Hall</term>
<term>Composition chimique</term>
<term>Mobilité porteur charge</term>
<term>Ionisation</term>
<term>Etain oxyde</term>
<term>Indium oxyde</term>
<term>Couche mince</term>
<term>7363</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The properties of indium tin oxide (ITO) thin films, deposited at room temperature by simultaneous pulsed laser deposition (PLD), and laser irradiation of the substrate are reported. The films were fabricated from different Sn-doped In
<sub>2</sub>
O
<sub>3</sub>
pellets at an oxygen pressure of 10 mTorr. During growth, a laser beam with an energy density of 0, 40 or 70 mJ/cm
<sup>2</sup>
was directed at the middle part of the substrate, covering an area of ∼ 1 cm
<sup>2</sup>
. The non-irradiated (0 mJ/cm
<sup>2</sup>
) films were amorphous; films irradiated with 40 mJ/cm
<sup>2</sup>
exhibited microcrystalline phases; and polycrystalline ITO films with a strong <111> > preferred orientation was obtained for a laser irradiation density of 70 mJ/cm
<sup>2</sup>
. The resistivity, carrier density, and Hall mobility of the ITO films were strongly dependent on the Sn doping concentration and the laser irradiation energy density. The smallest resistivity of ∼ 1 x 10
<sup>-4</sup>
Ω cm was achieved for a 5 wt % Sn doped ITO films grown with a substrate irradiation energy density of 70 mJ/cm
<sup>2</sup>
. The carrier mobility diminished with increasing Sn doping concentration. Theoretical models show that the decrease in mobility with increasing Sn concentration is due to the scattering of electrons in the films by ionized centers.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0947-8396</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. phys., A Mater. sci. process. : (Print)</s0>
</fA03>
<fA05>
<s2>81</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effects of laser irradiation energy density on the properties of pulsed laser deposited ITO thin films</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ADURODIJA (F. O.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BRÜNING (R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ASIA (I. O.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>IZUMI (H.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ISHIHARA (T.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>YOSHIOKA (H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Physics Department, Mount Allison University, 67 York Street</s1>
<s2>Sackville, N.B., E4L 1E6</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Chemistry Department, Ambrose Alli University</s1>
<s2>Ekpoma</s2>
<s3>NGA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Hyogo Prefectural Institute of Industrial Research, 3-1-12 Yukihira-cho</s1>
<s2>Suma-ku, Kobe 654-0037</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>953-957</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16194A</s2>
<s5>354000132373680120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0380779</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics. A, Materials science & processing : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The properties of indium tin oxide (ITO) thin films, deposited at room temperature by simultaneous pulsed laser deposition (PLD), and laser irradiation of the substrate are reported. The films were fabricated from different Sn-doped In
<sub>2</sub>
O
<sub>3</sub>
pellets at an oxygen pressure of 10 mTorr. During growth, a laser beam with an energy density of 0, 40 or 70 mJ/cm
<sup>2</sup>
was directed at the middle part of the substrate, covering an area of ∼ 1 cm
<sup>2</sup>
. The non-irradiated (0 mJ/cm
<sup>2</sup>
) films were amorphous; films irradiated with 40 mJ/cm
<sup>2</sup>
exhibited microcrystalline phases; and polycrystalline ITO films with a strong <111> > preferred orientation was obtained for a laser irradiation density of 70 mJ/cm
<sup>2</sup>
. The resistivity, carrier density, and Hall mobility of the ITO films were strongly dependent on the Sn doping concentration and the laser irradiation energy density. The smallest resistivity of ∼ 1 x 10
<sup>-4</sup>
Ω cm was achieved for a 5 wt % Sn doped ITO films grown with a substrate irradiation energy density of 70 mJ/cm
<sup>2</sup>
. The carrier mobility diminished with increasing Sn doping concentration. Theoretical models show that the decrease in mobility with increasing Sn concentration is due to the scattering of electrons in the films by ionized centers.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C63</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Effet rayonnement</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Radiation effects</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Rayonnement laser</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Laser radiation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Dépôt laser pulsé</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Pulsed laser deposition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Doping</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Doping</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Orientation préférentielle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Preferred orientation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Orientación preferencial</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Mobilité Hall</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Hall mobility</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Composition chimique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Chemical composition</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Carrier mobility</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Ionisation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Ionization</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Etain oxyde</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Tin oxides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Indium oxyde</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium oxides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>7363</s0>
<s4>INC</s4>
<s5>60</s5>
</fC03>
<fN21>
<s1>262</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 009F28 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 009F28 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:05-0380779
   |texte=   Effects of laser irradiation energy density on the properties of pulsed laser deposited ITO thin films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024